ДЕЛОВОЙ - главная     Авторам и читателям    научная книга "Деньги"    Контакты
научные статьи:   анализ конфликтов на Украине и в Сирии по теории гражданских войн    демократия и принципы Конституции в условиях перемен    три суперцивилизации    государственные идеологии России, Украины, ЕС и США    три глобализации: по-английски, по-американски и по-китайски   
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Тут выложен учебник Кристаллы , который написал Китайгородский Александр Исаакович.

Данная книга Кристаллы учебником (справочником).

Книгу-учебник Кристаллы - Китайгородский Александр Исаакович можно читать онлайн или скачать бесплатно тут, на этой странице, без регистрации и без СМС.

Размер архива с книгой Кристаллы: 814.18 KB

скачать бесплатно книгу: Кристаллы - Китайгородский Александр Исаакович




Александр Исаакович Китайгородский
Кристаллы
Введение
Кристаллы… да ведь это красивые редко встречающиеся камни. Они бывают разных цветов, в большинстве своём прозрачны, и, что самое замечательное, они обладают красивой правильной формой. Обычно кристаллы представляют собой многогранники, стороны (грани) их идеально плоские, рёбра строго прямые. Собранные в минералогическом музее, они радуют глаз чудесной игрой света в гранях, удивительной правильностью строения…
Всё сказанное действительно справедливо, но… кристаллы – совсем не музейная редкость. Кристаллы окружают нас повсюду. Твёрдые тела, из которых мы строим дома и делаем станки, вещества, которые мы употребляем в быту, – почти все они относятся к кристаллам.
Если посмотреть на простой камень в микроскоп, то можно увидеть, что почти каждый камень состоит из маленьких кристалликов. Примером тому рисунок 1; это не булыжная мостовая, а сфотографированная с большим увеличением аметистовая раковина в горной породе.

Рис. 1. Усеянная аметистами полость в горной породе (под микроскопом).

Песок и гранит, поваренная соль и сахар, алмаз и изумруд, медь и железо – всё это кристаллические тела.
В природе находят как мельчайшие кристаллики в форме иголок, таблеток, пирамид, призм, так и огромные кристаллы, размером в человеческий рост (рис. 2). Иногда находят отдельные кристаллики, в других случаях кристаллики срастаются в сложные сплетения, в грозди.
Как же мы отличаем кристалл от не кристалла? Что общего у видимого в микроскоп кристаллического зерна железа и играющего светом алмаза? Мы узнаем, что основным признаком кристалла служит исключительный порядок в расположении составляющих его частиц.

Рис. 2. Крупный кристалл горного хрусталя.

Внешне эта особенность выражается в окаймлении кристаллов плоскими гранями, которые пересекаются по прямым рёбрам. Поэтому легко убедиться в том, что мы имеем дело с кристаллом, если он крупный и одиночный. Микроскоп и рентгеновские лучи помогают нам в исследовании мельчайших кристаллов.
Знание свойств окружающих нас тел немыслимо без ясного представления о кристаллах. Поэтому следует познакомиться с кристаллами поближе. Мы расскажем в этой книжке о том, что такое кристаллы, как они построены, каковы их свойства и где они используются. Мы объясним также, почему знание кристаллов необходимо для понимания свойств твёрдых тел, и расскажем, что общего между куском стали и горным хрусталём.
1. Идеально правильные фигуры
На рисунке 3 представлено несколько многогранников. Их очертания очень совершенны, как говорят, идеально правильны.
В чём заключается совершенность изображённых тел, заслужившая для них название идеально правильных?

Рис. 3. Многогранники: а – куб; б – октаэдр; в – два додекаэдра – слева ромбододекаэдр, справа пентагондодекаэдр; г – шестигранная призма; д – сочетание призмы с двумя шестигранными пирамидами.

Многогранник, показанный на рисунке 3, а , называется кубом ; у него 6 граней, 12 рёбер и 8 вершин. На рисунке 3, б показан октаэдр. Слово «окта» по-гречески означает восемь, окончание «эдр» означает грань, название «октаэдр» соответствует русскому слову восьмигранник; у октаэдра 6 вершин и 12 рёбер. На рисунке 3, в изображены два разных двенадцатигранника. Один из них называется ромбододекаэдром (приставка «ромбо» указывает на форму грани, «додека» значит двенадцать.) Все его грани, как видно из рисунка, имеют форму ромба. Подсчитывая число вершин и рёбер у додекаэдра, получим соответственно 14 и 24. Рядом изображён пентагондодекаэдр . У него также двенадцать граней, но грань имеет форму пентагона – пятиугольника («пента» – пять, «гон» – угол).
У перечисленных пока что фигур все грани имеют одну и ту же форму. У куба – это квадраты, у октаэдра – равносторонние треугольники, у додекаэдра – ромбы или пятиугольники.
Эти правильные тела – самые простые. Но существуют и несколько более сложные формы. На рисунке 3, г изображена шестигранная призма. Два основания её – правильные шестиугольники, шесть боковых сторон – прямоугольники. Всего граней 8, рёбер 18 и вершин 12. Рядом (рис. 3, д ) показана красивая фигура, состоящая из двух шестигранных пирамид и одной шестигранной призмы. У этого тела 30 рёбер, 14 вершин и 18 граней – 12 граней имеют форму равнобедренного треугольника и 6 прямоугольны.
Мы приводим числа вершин, рёбер и граней, чтобы обратить внимание читателя на одно интересное правило, установленное знаменитым петербургским академиком Леонардом Павловичем Эйлером: число рёбер равно сумме числа граней и вершин, уменьшенной на два. Действительно, имеем для куба 12 = 6 + 8 – 2; для октаэдра 12 = 8 + 6 – 2; для ромбододекаэдра 24 = 12 + 14 – 2; для шестигранной призмы 18 = 8 + 12 – 2; у фигуры на рисунке 3, д 30 = 18 + 14 – 2.
Фигуры, подобные описанным нами, можно выпилить из дерева или изготовить искусственно из какого-либо иного материала. Замечательно, однако, то обстоятельство, что при некоторых предосторожностях (о которых мы будем говорить ниже, стр. 58) кристаллы вырастают в виде идеальных многогранников. В виде кубиков можно получить каменную соль. Алмаз находят в природе в виде октаэдров, а гранит – в виде ромбододекаэдров. Однако значительно чаще кристаллы принимают форму не простых, а сложных многогранников, имеющих несколько разных «сортов» граней. Например, кристаллы кварца довольно часто встречаются в виде только что описанных тел (рис. 3, д ) с гранями двух сортов – прямоугольными и треугольными.
2. Кристаллы-близнецы
Рассмотрим внимательно большое количество кристаллов одного и того же вещества. Не все образцы будут представлять собой правильные фигуры. Некоторые кристаллики будут просто обломками, другие будут иметь одну, две грани «ненормально» развитыми. Однако ряд образцов покажется нам достаточно идеальным. Отберём их из общей кучи и зарисуем. Мы увидим тогда, что имеются кристаллы, отличающиеся друг от друга главным образом размером. Если маленький пропорционально увеличить, то он будет в точности повторять большой. Наряду с такими кристалликами мы найдём и другие, чем-то похожие друг на друга, но уже не совпадающие ни при каком пропорциональном изменении размеров (рис. 4).

Рис. 4. Некоторые возможные формы кристаллов кварца.

У разных образцов кристаллов одного и того же вещества может быть представлено (или, как говорят, могут развиться) различное число граней одного «сорта», а также различное число самих «сортов» граней. И всё же такие кристаллики похожи друг на друга, как близкие родственники, как близнецы. В чём же заключается их сходство? В XVII и XVIII веках многие учёные независимо друг от друга искали эти родственные черты.
Одним из учёных, открывших закон, объясняющий это сходство, – закон постоянства углов в кристаллах – был Михаил Васильевич Ломоносов. Изучая драгоценные камни, он неизменно находил одни и те же углы между их гранями .
Посмотрите на рисунок 4, где изображён ряд кристаллов кварца. Все эти кристаллики – близкие родственники. Их можно сделать и совсем одинаковыми, сошлифовывая грани на различную глубину параллельно самим себе . Легко видеть, что таким способом, например, кристалл II может быть сделан совершенно таким же, как кристалл I . Эта возможность следует из того замечательного обстоятельства, что углы между сходственными гранями образцов одинаковы, например, между гранями А и Б , Б и В и т.д.
В этом равенстве углов и заключается «семейное» сходство кристаллов. При сошлифовывании граней параллельно самим себе форма кристалла изменяется, но углы между гранями сохраняют своё значение.
При росте кристалла в зависимости от ряда случайностей одни грани могут попасть в условия более благоприятные, другие в менее удобные для увеличения своих размеров. Кристалл вырастет неправильным, родственные взаимоотношения между выросшими в разных условиях образцами станут незаметными, но углы между сходственными гранями всех кристаллов изучаемого вещества будут всегда одинаковы. Форма кристалла случайна, а углы между гранями отвечают (и мы дальше поймём, почему) его внутренней природе.
Этот очень важный закон природы помогает нам узнавать, с каким веществом мы имеем дело. Два образца могут быть внешне очень непохожими, но если измерение показывает, что углы между гранями одинаковы, то имеются серьёзные основания полагать, что мы имеем дело с одним и тем же веществом. Напротив, отсутствие совпадающих углов между гранями говорит за то, что кристаллы принадлежат разным веществам.
Анализ вещества, построенный на этой идее, был разработан творцом современной кристаллографии – так называется наука о строении и свойствах кристаллов – русским учёным Евграфом Степановичем Фёдоровым.
Е.С. Фёдоров не только указал на возможность определения вещества по форме кристалла, но и составил вместе со своими учениками книгу «Царство кристаллов», плод гигантского труда, длившегося свыше 10 лет. Эта книга содержит в себе основы современной кристаллографии и справочный материал о величинах углов между гранями у огромного количества кристаллов.
Для анализа вещества методом Е.С. Фёдорова требуется иметь маленький кристаллик, размером хоть с песчинку. У этого кристаллика мы измеряем на специальных приборах – гониометрах – углы между гранями. Затем, пользуясь правилами, разработанными Фёдоровым, мы определяем, к какой группе веществ принадлежит исследуемый кристалл, и по совпадению данных измерения с цифрами, приведёнными в «Царстве кристаллов», находим, с каким веществом мы имеем дело. Разумеется, анализ не может быть проведён в том случае, если данное вещество никогда не изучалось и сведений о нём нет в книге.
Анализ методом Е.С. Фёдорова оказал уже не мало услуг промышленности. Например, в 1938 году с помощью определителя кристаллов было обнаружено присутствие в россыпях на Урале важнейшей оловянной руды – касситерита, кристаллы которого были ранее ошибочно отнесены к другому минералу – рутилу (окись титана).
3. Что такое симметрия
Смысл этого слова лучше всего мы поймём на примерах.
На рисунке 5, а изображена скульптура; перед ней стоит большое зеркало. В зеркале возникает отражение, в точности повторяющее предмет. Скульптор может изготовить две фигуры и расположить их так же, как фигуру и её отражение в зеркале (рис. 5, б ). Эта «двойная» скульптура будет симметричной фигурой – она состоит из двух зеркально равных частей.

Рис. 5. а – скульптура и её изображение в зеркале; б – симметричная скульптура, состоящая из двух частей.

Действительно, представим себе, что так же, как и на рисунке 5, а , расположено плоское зеркало. Тогда правая часть скульптуры в точности совпадёт с отражением левой её части. Эта симметричная фигура обладает вертикальной плоскостью зеркальной симметрии , которая проходит через середину постамента. Плоскость симметрии – мысленная плоскость, но мы её отчётливо ощущаем, рассматривая симметрично построенное тело.
На рисунках 6 и 7 приведены другие примеры тел, имеющих плоскость симметрии. Плоскостью симметрии обладают тела животных, вертикальную плоскость симметрии можно провести через человека. В животном мире симметрия осуществляется лишь приблизительно, да и вообще идеальной симметрии в жизни не существует. Архитектор может изобразить на чертеже дом, состоящий из двух идеально симметричных половин. Но когда дом будет построен, как бы хорошо его ни делали, всегда можно будет найти разницу в двух соответствующих частях здания: в одном месте есть трещинка, в другом – нет; в одном месте краска положена густо, в другом редко…

Рис. 6. Зеркальную плоскость симметрии имеют тела человека и животных.

Рис. 7. Здание Московского Государственного Университета им. М.В. Ломоносова обладает вертикальной плоскостью симметрии.

Наиболее точная симметрия осуществляется в мире кристаллов, но и здесь она не идеальная: наличие невидимых глазом трещинок, царапин всегда делает равные грани слегка отличными друг от друга.
На рисунке 8 изображена детская бумажная вертушка. Она тоже симметрична, но плоскость симметрии через неё провести нельзя. В чём же тогда заключается симметрия этой фигурки? Прежде всего, спросим себя о симметричных её частях. Сколько их? Очевидно, четыре. В чём заключается правильность взаимного расположения этих одинаковых частей? Это также нетрудно заметить. Повернём вертушку на прямой угол, то есть на 1/4 окружности; тогда крыло 1 встанет на то место, где было крыло 2 ; крыло 2 – на место 3 ; 3 – на место 4 и 4 – на место 1 . Новое положение неотличимо от предыдущего. Про такую фигурку мы скажем так: она обладает осью симметрии и притом осью симметрии 4-го порядка.

Рис. 8. Бумажная вертушка обладает осью симметрии 4-го порядка.

Итак, ось симметрии – это такая прямая линия, поворотом около которой на долю оборота можно перевести тело в положение, неотличимое от исходного. Порядок оси (в нашем случае 4-й) указывает, что такое совмещение происходит при повороте на 1/4 окружности. Следовательно, четырьмя последовательными поворотами мы возвращаемся в исходное положение.
Оси симметрии различных порядков приблизительно осуществляются у цветов. Цветок на рисунке 9, а обладает осью симметрии 2-го порядка – при повороте на 1/2 окружности цветок совмещается сам с собой. При наличии оси 6-го порядка (рис. 9, б ) совмещение происходит при повороте на 1/6 долю полного оборота. Цветы яблони, груши и многие другие имеют ось симметрии 5-го порядка. Помимо вертикальной оси симметрии у цветка на рисунке 9, а есть ещё две вертикальные плоскости симметрии, а на рисунке 9, б – 6 плоскостей симметрии. Сообразите сами, как они проходят.

Рис. 9. Оси симметрии 2-го и 6-го порядков у цветов.

На рисунке 10 приведены примеры более сложных случаев симметрии, встречающихся в природе. Организм на рисунке 10, а обладает осью симметрии 4-го порядка, перпендикулярной плоскости рисунка, четырьмя осями симметрии 2-го порядка, лежащими в этой плоскости, и рядом плоскостей симметрии.

Рис. 10. Примеры более сложной симметрии, осуществляемой природой.

Снежинка на рисунке 10, б имеет ось симметрии 3-го порядка, три оси 2-го порядка и ряд плоскостей симметрии. Возможно очень большое число фигур, различающихся своей симметрией. (Заметим, что подчас совершенно непохожие тела, например человек и бабочка, имеют сходную симметрию.)
Встречаемся ли мы с симметрией любого типа в царстве кристаллов? Опыт показывает, что нет.
В кристаллах мы встречаемся лишь с осями симметрии 2, 3, 4 и 6-го порядков. И это не случайно. Кристаллографы доказали, что это следует из решетчатого строения (см. ниже) кристалла. Поэтому число различных видов или, как говорят, классов симметрии кристаллов относительно невелико – оно равно 32.
4. Внешняя красота – признак внутренней правильности
Почему так красива, правильна форма кристалла? Грани его блестящие и ровные и выглядят так, как будто бы над кристаллом поработал искусный шлифовальщик. Отдельные части кристалла повторяют друг друга, образуя красивую симметричную фигуру.
Эта исключительная правильность кристаллов была знакома уже людям древности. Но представления древних учёных о кристаллах мало отличались от сказок и легенд, сочинённых поэтами, воображение которых было пленено красотой кристаллов. Верили, что хрусталь образуется изо льда, а алмаз – из хрусталя. Кристаллы наделялись множеством таинственных свойств: исцелять от болезней, предохранять от яда, влиять на судьбу человека…
Лишь в XVII–XVIII веках появились первые научные взгляды на природу кристаллов. Представление о них даёт рисунок 11, заимствованный из книги XVIII века. По мнению её автора, кристалл построен из мельчайших «кирпичиков», плотно приложенных друг к другу. Эта мысль довольно естественна. Разобьём сильным ударом кристалл кальцита (углекислый кальций). Он разлетится на кусочки разной величины. Рассматривая их внимательно, мы обнаружим, что эти куски имеют правильную форму, вполне подобную форме большого кристалла – их родителя. Наверно, рассуждал учёный, и дальнейшее дробление кристалла будет происходить таким же образом, пока мы не дойдём до мельчайшего, невидимого глазом кирпичика, представляющего кристалл данного вещества. Эти кирпичики так малы, что построенные из них ступенчатые «лестницы» – грани кристалла кажутся нам безукоризненно гладкими. Ну, а дальше, что же представляет собой этот «последний» кирпич? На такой вопрос учёный того времени ответить не мог.

Рис. 11. Справа кристалл, слева его строение, по мысли учёных XVIII века.

Эта «кирпичная» теория строения кристалла принесла науке большую пользу. Она объяснила происхождение прямых рёбер и граней кристалла: при росте кристалла одни кирпичики подстраиваются к другим, и грань растёт, как стена дома, выкладываемая руками невидимого каменщика. С точки зрения «кирпичной» теории понятно, что правильная форма кристалла есть проявление его внутренних свойств. Из большого кристалла, скажем каменной соли, можно выточить шар. Грани и рёбра кристалла исчезли, но на самом деле они существуют, хотя и в скрытом виде. Начнём медленно растворять шар из каменной соли. Мы увидим, как по мере растворения из шара образуется… куб, то есть та форма, которая свойственна кристаллу данного вещества (см. стр. 54).
5. Поговорим об обоях
Теперь мы хотим дать читателю современные представления о природе кристалла. Для этого сначала нам придётся поговорить… об обоях. Посмотрите на рисунок 12. На нём изображена девочка, играющая в мяч. И не одна девочка, а много совершенно одинаковых фигурок. Найдём на этом рисунке обоев тот наименьший кусок, который надо нарисовать художнику, иначе говоря, тот кусок, простым перекладыванием которого можно составить все обои. Чтобы выделить такой кусок, проведём из любой точки рисунка, например из центра мячика, две линии, соединяющие выбранный мячик с двумя соседними. На этих линиях можно построить, как это видно на нашем рисунке, параллелограмм. Совершенно ясно, что перекладываниям этого кусочка в направлении основных исходных линий мы можем составить весь рисунок обоев.

Рис. 12. Рисунок этих простеньких обоев помогает нам понять решетчатое строение кристаллов.

Этот наименьший кусок может быть выбран по-разному: из рисунка сразу видно, что можно выбрать несколько разных параллелограммов, каждый из которых содержит одну фигурку. Подчеркнём, что для нас в данном случае безразлично, будет ли эта фигурка внутри выделенного куска целой или разделённой на части линиями, ограничивающими этот кусок.
Было бы неверным полагать, что, изготовив повторяющуюся на обоях фигурку, художник может считать свою задачу оконченной. Это было бы так лишь в том случае, если составление обоев можно было бы провести единственным способом – прикладыванием к данному кусочку, содержащему одну фигурку, другого такого же, параллельно сдвинутого. Однако кроме этого простейшего способа есть ещё шестнадцать способов заполнения обоев закономерно повторяющимся рисунком, то есть, всего существует 17 типов взаимных расположений фигурок на плоскости. Они показаны на рисунке 13.

Рис. 13. 17 типов симметрии плоского узора; элементарные ячейки выделены.

В качестве повторяющегося рисунка здесь выбрана более простая, но, так же как и на рисунке 12, лишённая собственной симметрии фигурка. Однако составленные из неё узоры симметричны, и их различие определяется различием симметрии расположения фигурок.
Мы видим, что, например, в первых трёх случаях рисунок не обладает зеркальной плоскостью симметрии – нельзя поставить вертикальное зеркало так, чтобы одна часть рисунка была «отражением» другой части. Напротив, в случаях 4 и 5 имеются плоскости симметрии. В случаях 8 и 9 можно «установить» два взаимно перпендикулярных зеркала. В случае 10 имеются оси 4-го порядка, перпендикулярные чертежу, в случае 11 – оси 3-го порядка. В случаях 13 и 15 имеются оси 6-го порядка и т.д.
Плоскости и оси симметрии наших рисунков выступают не по одиночке, а параллельными семействами. Если мы нашли одну точку, через которую можно провести ось (или плоскость) симметрии, то найдём быстро и соседнюю, и далее на таком же расстоянии третью и четвёртую и т.д. точки, через которые проходят такие же оси (или плоскости) симметрии.
Выберем теперь на этих узорах такой наименьший кусок, перемещая который параллельно самому себе на расстояния, равные длинам его сторон, мы сможем воспроизвести всю картину обоев. Мы столкнёмся при этом с несколькими интересными обстоятельствами.
Во-первых, этот наименьший кусок, или, как его принято называть, элементарная ячейка может оказаться параллелограммом (например, случай 1 на рисунке 13), прямоугольником (случаи 3 , 4 и др.), ромбом с углом 60° или же квадратом.
Во-вторых, на элементарную ячейку в разных случаях приходится различное число фигурок. Это число равно 1 для случая 1 , 4 для случая 8 , 6 для случая 17 и т.д.
Принято выбирать элементарные ячейки так, чтобы они были наименьшими, но отражали бы симметрию, присущую узору в целом. Так, в случае 9 можно выбрать прямоугольную ячейку, на которую приходится 8 фигурок, и вдвое меньшую косоугольную. Рисунок указывает на высокую симметрию взаимного расположения фигурок – наличие взаимно перпендикулярных плоскостей симметрии. Косоугольная элементарная ячейка делала бы не очевидной эту высокую симметрию. Поэтому здесь и в других подобных случаях в качестве элементарной ячейки выбирается прямоугольник.
Однако некоторая свобода выбора в расположении элементарной ячейки всегда имеется. Так, совершенно безразлично, поместим ли мы углы ячейки в местах «головок» или «хвостиков» фигурок или же где-либо на белом поле между ними. В случаях 14 или 15 выбор ячейки несколько лучше подчёркивает симметрию обоев, чем, скажем, в случае 8 , но сути дела это не меняет, и мы можем, если желаем, произвольно переместить углы ячейки в случае 8 , оставляя, конечно, размеры ячейки теми же и стороны её параллельными самим себе.
Способы заполнения элементарной ячейки отдельными фигурками во всех случаях различны. Этим прежде всего и отличаются друг от друга изображённые 17 случаев. Таким образом, художник, выполнивший повторяющийся рисунок обоев, должен указать, кроме того, каким из 17 способов надо построить обои из его рисунка. Например, для случая 8 надо выполненный рисунок расположить в заштрихованной части (одной четверти) элементарной ячейки и отразить его в двух «зеркалах» (рис. 14).
17 типов симметрии плоского узора не исчерпывают, конечно, всего разнообразия узоров, составляемых из одной и той же фигурки: художник должен указать ещё одно обстоятельство, – как расположить фигурку по отношению к граничным линиям ячейки. На рисунке 14 показаны два узора обоев с той же исходной фигуркой, но различно расположенной по отношению к зеркалам. Оба эти узора относятся к случаю 8 .

Рис. 14. Два разных расположения фигурок при одинаковом типе симметрии узора.

Мы не станем приводить правила построения обоев во всех остальных случаях.
Какое же отношение имеют обои к кристаллу?
Каждое тело, в том числе и кристалл, состоит из атомов. Простые вещества состоят из одинаковых атомов, сложные – из атомов двух или нескольких сортов. Предположим, что мы могли бы в сверхмощный микроскоп рассмотреть поверхность кристалла поваренной соли и увидеть центры атомов. Рисунок 15 показывает, что атомы расположены вдоль грани кристалла, как узор обоев.

Рис. 15. Схема расположения атомов натрия (I) и хлора (II) на грани куба кристалла каменной соли.

Теперь мы готовы к тому, чтобы понять, как построен кристалл. Кристалл представляет собой «пространственные обои» . Пространственные, то есть объёмные, а не плоские элементарные ячейки – это «кирпичи», прикладыванием которых друг к другу в пространстве строится кристалл.
Сколько же способов построения «пространственных обоев» из элементарных кусков? Эта сложная математическая задача была также решена Е.С. Фёдоровым. Он доказал, что должны существовать 230 способов построения кристалла или, как сейчас говорим, 230 фёдоровских групп. Открытие Е.С. Фёдорова принадлежит к величайшим достижениям русской науки. Начатые примерно через 20 лет после вывода Фёдорова опытные проверки его теории – они стали возможными лишь после открытия рентгеновского структурного анализа – привели к блестящему её подтверждению. Не было найдено ни одного кристалла, который не принадлежал бы к той или иной фёдоровской группе.
Все современные данные о внутреннем строении кристаллов получены при помощи рентгеновского структурного анализа , открытого в 1912 году.
Маленький, размером 0,5–1 мм, кристаллик ставится на пути узкого рентгеновского луча. За кристаллом помещается фотопластинка. Наряду с прошедшим сквозь кристалл лучом возникает ряд отклонённых лучей. Мы не будем здесь останавливаться на причине их возникновения. Явление это носит название дифракции .
Проявленная фотопластинка обнаруживает много пятен, по расположению и интенсивности которых можно судить о структуре кристалла. Примерный вид такого снимка – рентгенограммы топаза – приведён на рисунке 16 (в действительности пятна обычно несколько размыты и различаются не столько по величине, сколько по яркости); справа внизу указаны размеры кристаллика. Расшифровка рентгенограмм представляет собой сложную задачу.

Рис. 16. Рентгенограмма кристалла топаза.

Огромное значение для развития рентгеноструктурного анализа имели труды известного русского кристаллографа Г.В. Вульфа. За время, протекшее после открытия рентгеноструктурного анализа, этим методом было изучено строение многих тысяч кристаллов.
6. Невидимые решётки
Существуют простые кристаллы, построенные из атомов одного сорта. Например, алмаз – это чистый углерод. Кристаллы поваренной соли состоят из ионов (электрически заряженных атомов) двух сортов – натрия и хлора. Более сложные кристаллы могут быть построены из молекул, которые в свою очередь состоят из атомов многих сортов.
Однако в кристалле всегда можно выделить наименьшую повторяющуюся группу атомов (в простейшем случае это будет один атом), что соответствует повторяющейся на плоских обоях рисунка 13 одной фигурке.
Как и на рисунке обоев, в кристалле всегда можно найти элементарную ячейку, – то есть такой параллелепипед (для плоских обоев это был прямой или косоугольный параллелограмм), последовательным перемещением которого параллельно самому себе на расстояния, равные его рёбрам, можно воспроизвести весь кристалл.
Повторяющиеся группы атомов (или отдельные атомы) укладываются друг по отношению к другу внутри элементарной ячейки кристалла вполне определённым образом – одним из 230 способов Фёдорова.
Вершины ячейки кристаллографы называют узлами . Обычно их удобнее всего размещать в центрах атомов кристалла. При этом, конечно, не все атомы попадают в вершины ячеек. В самых сложных кристаллах элементарная ячейка будет косоугольным параллелепипедом. В более симметричных кристаллах ячейка имеет форму, например, прямоугольного параллелепипеда. Наиболее симметричные кристаллы – кубические, их ячейка имеет форму куба.
Если изобразить в пространстве строение кристалла, отмечая только узлы и соединяющие их линии, то возникнет своего рода «скелет» кристалла. Этот скелет, сделанный из проволоки и узлов–шариков, показан на рисунке 17; такое изображение кристалла называется кристаллической пространственной решёткой . Изучим сначала «скелет» кристалла, а затем уже будем облекать его плотью.

Рис. 17. Модель кристаллической решётки.

Основная особенность кристаллической структуры заключается в её повторяемости через строго одинаковые расстояния. Предположим, что мы сделали прогулку вдоль одной из проволочек рисунка 17. Выйдя из узла и продвигаясь вдоль проволоки, мы попадали бы всё в новые «местности». Но наши новые впечатления продолжались бы лишь до следующего узла. Начиная же от него, мы увидели бы полное повторение «пейзажа», уже знакомого нам по путешествию от первого до второго узла.
Двигаясь в разных направлениях внутри кристалла, мы наблюдали бы разные картины, но во всех случаях, пройдя некоторое расстояние, мы попадали бы в места, неотличимые от уже пройденных, и это повторялось бы всё время через равные промежутки.

Китайгородский Александр Исаакович - Кристаллы -> вторая страница книги


Нам хотелось бы, чтобы деловая книга Кристаллы автора Китайгородский Александр Исаакович понравилась бы вам!
Если так окажется, тогда вы можете порекомендовать эту книгу Кристаллы своим друзьям, установив у себя гиперссылку на эту страницу с произведением: Китайгородский Александр Исаакович - Кристаллы.
Ключевые слова страницы: Кристаллы; Китайгородский Александр Исаакович, скачать, бесплатно, читать, книга, онлайн, ДЕЛОВОЙ
научные статьи:   этнические потенициалы русских, американцев, украинцев и др. народов мира    циклы и пути национализма, патриотизма и сепаратизма    реальная дружба - это взаимопомощь    чему должна учить школа    принципы для улучшения брака: 1 и 3 - женщинам, а 4 и 6 - мужчинам   

А - П

П - Я